CORRECTIONS TO "ON SEQUENTIAL CONVERGENCE"

BY R. M. DUDLEY

In my paper [2], Theorems 8.2 and 8.3 are false. I am indebted to Dennis Sentilles who sent me a counterexample to Theorem 8.2.

The wrong statements concern "LS-spaces." These are linear spaces S on which there is a metric ρ and a function f such that $x_n \to x$ in S if and only if both $\rho(x_n, x) \to 0$ and $f(x_n)$ remains bounded. Without restating the further conditions imposed on ρ and f, we single out for the present two tractable subclasses of the class of LS-spaces:

- (I) LF-spaces, i.e. strict inductive limits of Fréchet spaces ([1], [2, Theorem 7.7]).
- (II) If B is a separable Banach space, and S is its dual B^* with weak-star convergence of sequences, then S is an LS-space [2, Theorem 7.1]. (Actually the same is true with "Fréchet" in place of "Banach": see [1, Théorème 5, p. 84].)

In case (I), Theorems 8.2 and 8.3 are true. The Banach-Steinhaus theorem for *LF*-spaces is well known [1, Théorème 2, p. 73]. But in case (II), if *B* is infinite-dimensional, the elements of its unit ball give pointwise bounded continuous linear forms on *S* which are not equicontinuous for the *LS*-topology. The proof of Theorem 8.2 in [2] errs in assuming that multiplication by a positive scalar is an open mapping in the relative topology of a (convex, symmetric, closed, metrizable) set.

The proof of Theorem 8.3 is invalid since it rests on Theorem 8.2. Disproving the statement of 8.3 requires some further work. Here is one counterexample.

Let $\mathscr C$ be the space of continuous real functions on [0, 1] with supremum norm. Then its dual $\mathscr C^*$ is the space of finite signed measures on [0, 1]. $\mathscr C^*$ with weak* sequential convergence is an LS-space. It has a countable dense set and is complete as an LS-space. The LS-topology $\mathscr T$ on $\mathscr C^*$ is the topology of uniform convergence on sequences $\{f_n\}$ in $\mathscr C$ with $\|f_n\| \to 0$ [2, around Theorem 7.8]. By the Mackey-Arens theorem, the dual space of $(\mathscr C^*, \mathscr T)$ is $\mathscr C$ (see also [1, Théorème 6, p. 85]).

A sequence in \mathscr{C} is weakly convergent if and only if it is uniformly bounded and converges pointwise. Thus the following fact contradicts Theorem 8.3:

PROPOSITION. Bounded pointwise convergence in $\mathscr C$ is not countably quasi-metric.

Proof. Suppose there is a metric d and a countable set $\{G_m\}_{m=1}^{\infty}$ of functions on \mathscr{C} such that if $||f_n|| \le 1$, then $f_n \to 0$ pointwise if and only if both:

Received by the editors November, 3, 1969.

- (a) $d(f_n, 0) \rightarrow 0$ and
- (b) for each m, $\sup_{n} G_{m}(f_{n}) < \infty$.

For some intervals $I_m = [a_m, b_m]$, $0 = a_0 < a_1 < \cdots < a_m < \cdots < b_m < \cdots < b_1 < b_0 = 1$, let $\mathscr{C}_m = \{ f \in \mathscr{C} : ||f|| \le 1, f(x) = 0 \text{ for all } x \notin I_m \}$. We can define a_m and b_m inductively so that for each m,

- (c) $\sup \{G_m(f) : f \in \mathscr{C}_m\} < \infty$ and
- (d) $\sup \{d(0,f): f \in \mathscr{C}_m\} < 1/m$.

To do this, we can let $a_{m+1} = (a_m + b_m)/2$ and $b_{m+1} = a_{m+1} + 1/r$ for r large enough (if $g_r \in \mathscr{C}$, $||g_r|| \le 1$, and $g_r = 0$ outside $[a_{m+1}, a_{m+1} + 1/r]$, then $g_r \to 0$ pointwise).

Now there is a c with $a_m < c < b_m$ for all m, and there are f_m in \mathscr{C}_m with $f_m(c) = 1$ for all m. But (a) through (d) imply $f_m(c) \to 0$, a contradiction. Q.E.D.

Another correction: on p. 506 in [2], it is wrongly stated that topologies T(C) on distribution spaces \mathscr{E}' and \mathscr{S}' are not locally convex (see [3]).

REFERENCES

- 1. Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier Grenoble 1 (1949), (1950), 61-101. MR 12, 417,
- 2. R. M. Dudley, On sequential convergence, Trans. Amer. Math. Soc. 112 (1964), 483-507. MR 30 #5266.
- 3. J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64 (1968), 341-364. MR 36 #5652.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139